Cheap nanoclusters for cancer treatment

 Breakthrough at Calicut University: Researchers Develop Affordable Nanoclusters for Clean Energy & Medicine

By Rahul

16 June 2025



Scientists at the **University of Calicut** have achieved a major milestone in nanotechnology by developing **low-cost, high-efficiency nanoclusters** that could revolutionize industries ranging from **renewable energy to cancer treatment**. This innovation, led by the Department of Nanoscience, promises to make advanced nanomaterials **accessible to developing countries**—addressing a critical gap in global research.  


In this **in-depth report**, we’ll explore:  

✔ **What are nanoclusters, and why do they matter?**  

✔ **How Calicut’s team made them affordable**  

✔ **Key applications in energy, healthcare, and electronics**  

✔ **Challenges and future commercialization plans**  

✔ **How this compares to global nanotech advancements**  


Read more articles

  1. How China bypasses US chip ban
  2. GitHub CEO Warns Startups: AI Coding Assistants Can’t Replace Developers  
  3. Air India Boeing crash, Google AI error, AI hallucinations in aviation*  





## **1. What Are Nanoclusters?**  


Nanoclusters are **tiny atomic assemblies (1–100 nm)** with unique optical, electrical, and catalytic properties. Unlike bulk materials, their behavior changes at the nanoscale, enabling breakthroughs like:  

- **Targeted drug delivery** (cancer therapy).  

- **Hydrogen fuel production** (clean energy).  

- **Ultra-sensitive sensors** (disease detection).  


**The Cost Problem:**  

Most nanoclusters require **rare metals (gold, platinum)** or **complex lab setups**, making them prohibitively expensive (up to **₹50,000 per gram**).  


---  


## **2. Calicut’s Breakthrough: Affordable Nanoclusters**  


### **The Research Team**  

- Led by **Dr. R. S. Jayasree** (Dept. of Nanoscience).  

- Funded by **DST-SERB (India)** and published in *ACS Applied Nano Materials*.  


### **Key Innovations**  

✔ **Used cheap, abundant metals** (copper, iron) instead of gold/silver.  

✔ **Developed a one-step chemical process** (reduces production time by **70%**).  

✔ **Achieved 95% purity**—matching expensive alternatives.  


**Cost Reduction:**  

| **Type** | **Traditional Cost (per gram)** | **Calicut’s Method (per gram)** |  

|----------|-------------------------------|--------------------------------|  

| Gold nanoclusters | ₹45,000–₹60,000 | **₹1,200–₹1,500** |  

| Platinum nanoclusters | ₹55,000+ | **₹1,800** (copper-based alternative) |  


---  


## **3. How It Works: The Science Simplified**  


### **Synthesis Process**  

1. **Precursor Mixing:** Cheap metal salts + organic ligands.  

2. **Microwave-Assisted Reaction** (5 mins vs. 24 hrs for traditional methods).  

3. **Self-Assembly:** Atoms arrange into stable clusters.  


**Why Microwave?**  

- Saves energy.  

- Prevents impurities.  


---  


## **4. Potential Applications**  


### **A. Clean Energy (Hydrogen Fuel)**  

- **Problem:** Hydrogen production relies on **platinum catalysts** (costly).  

- **Solution:** Calicut’s **copper-iron nanoclusters** show **90% efficiency** in water-splitting.  


### **B. Cancer Treatment**  

- **Targeted Drug Delivery:** Nanoclusters bind to tumors, **reducing chemo side effects**.  

- **Example:** In trials, **iron nanoclusters + curcumin** shrank tumors by **40%** (mice studies).  


### **C. Electronics**  

- **Flexible screens:** Nanoclusters enable **cheaper OLEDs**.  

- **Biosensors:** Detect diseases from **a drop of blood**.  


---  


## **5. Advantages Over Existing Tech**  


| **Factor** | **Traditional Nanoclusters** | **Calicut’s Nanoclusters** |  

|------------|----------------------------|---------------------------|  

| **Cost** | Very high (₹50k/g) | **1/30th the price** |  

| **Scalability** | Complex lab synthesis | **Microwave-friendly** |  

| **Eco-Impact** | Toxic solvents | **Water-based process** |  

| **Purity** | 90–98% | **95%+** |  


---  


## **6. Challenges & Next Steps**  


### **A. Stability Issues**  

- Some clusters degrade in **high temperatures**.  

- **Solution:** Coating with graphene (ongoing research).  


### **B. Commercialization**  

- Partnering with **Tata Chemicals** for mass production.  

- **Goal:** Market-ready by **2026**.  


### **C. Global Competition**  

- **China’s lead in nanotech patents**.  

- **U.S./EU dominance in medical applications**.  


---  


## **7. India’s Position in the Global Nanotech Race**  


| **Country** | **Strengths** | **Weaknesses** |  

|------------|--------------|---------------|  

| **USA** | Medical nanotech | High costs |  

| **China** | Mass production | IP theft concerns |  

| **India** | Affordable innovations | Limited funding |  


**Calicut’s Edge:**  

- **Low-cost solutions** for Global South.  

- **Focus on sustainability**.  


---  


## **8. Expert Reactions**  


- **Dr. C. N. R. Rao (Nanotech Pioneer):** *"A pragmatic approach to democratizing nanotechnology."*  

- **Nature India:** *"Could bridge the lab-to-market gap in developing nations."*  


---  


## **9. How This Affects You**  


✔ **Cheaper medical tests** in rural clinics.  

✔ **Lower-cost renewable energy** solutions.  

✔ **Boost for Indian startups** in nanotech.  


---  


## **10. Final Verdict: A Game-Changer for Affordable Tech**  


**Pros:**  

✅ **Makes nanotech accessible** to poorer nations.  

✅ **Environmentally friendly synthesis**.  

✅ **Diverse applications** (health, energy, electronics).  


**Cons:**  

❌ **Not yet scalable** for industry.  

❌ **Stability needs improvement**.  


**Rating: 8.5/10** – A **transformative** step toward **inclusive science**.  


---  



No comments

Powered by Blogger.